Zip3 Provides a Link between Recombination Enzymes and Synaptonemal Complex Proteins
نویسندگان
چکیده
In budding yeast, absence of the meiosis-specific Zip3 protein (also known as Cst9) causes synaptonemal complex formation to be delayed and incomplete. The Zip3 protein colocalizes with Zip2 at discrete foci on meiotic chromosomes, corresponding to the sites where synapsis initiates. Observations suggest that Zip3 promotes synapsis by recruiting the Zip2 protein to chromosomes and/or stabilizing the association of Zip2 with chromosomes. Zip3 interacts with a number of gene products involved in meiotic recombination, including proteins that act at both early (Mre11, Rad51, and Rad57) and late (Msh4 and Msh5) steps in the exchange process. We speculate that Zip3 is a component of recombination nodules and serves to link the initiation of synapsis to meiotic recombination.
منابع مشابه
Fpr3 and Zip3 Ensure that Initiation of Meiotic Recombination Precedes Chromosome Synapsis in Budding Yeast
BACKGROUND Homolog pairing, synaptonemal complex (SC) assembly (chromosome synapsis), and crossover recombination are essential for successful meiotic chromosome segregation. A distinguishing feature of meiosis in budding yeast and mammals is that synapsis between homologs depends upon recombination; however, the molecular basis for this contingency is not understood. RESULTS We show here tha...
متن کاملZHP-3 Acts at Crossovers to Couple Meiotic Recombination with Synaptonemal Complex Disassembly and Bivalent Formation in C. elegans
Crossover recombination and the formation of chiasmata normally ensure the proper segregation of homologous chromosomes during the first meiotic division. zhp-3, the Caenorhabditis elegans ortholog of the budding yeast ZIP3 gene, is required for crossover recombination. We show that ZHP-3 protein localization is highly dynamic. At a key transition point in meiotic prophase, the protein shifts f...
متن کاملTying synaptonemal complex initiation to the formation and programmed repair of DNA double-strand breaks.
During meiosis, homologous chromosomes recombine and become closely apposed along their lengths within the synaptonemal complex (SC). In part because Spo11 is required both to make the double-strand breaks (DSBs) that initiate recombination and to promote normal SC formation in many organisms, it is clear that these two processes are intimately coupled. The molecular nature of this linkage is n...
متن کاملA Zip3-like protein plays a role in crossover formation in the SC-less meiosis of the protist Tetrahymena
When programmed meiotic DNA double-strand breaks (DSBs) undergo recombinational repair, genetic crossovers (COs) may be formed. A certain level of this is required for the faithful segregation of chromosomes, but the majority of DSBs are processed toward a safer alternative, namely noncrossovers (NCOs), via nonreciprocal DNA exchange. At the crossroads between these two DSB fates is the Msh4-Ms...
متن کاملSUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae.
The synaptonemal complex (SC) is a proteinaceous complex that apparently mediates synapsis between homologous chromosomes during meiotic prophase. In Saccharomyces cerevisiae, the Zip1 protein is the integral component of the SC. In the absence of a DNA double-strand break or the SC initiation protein Zip3, Zip1 proteins aggregate to form a polycomplex (PC). In addition, Zip1 is also responsibl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 102 شماره
صفحات -
تاریخ انتشار 2000